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Iﬂ)this paper we describeﬁPigh-order accurate Godunov-type schemes for °}fﬂﬁy

the computation of weak solutions of hyperbolic conservation laws that are

7 15 shown
essentially non-oscillatory. We show that the problem of designing such
schemes reduces to a problem in approximation of functions, namely that of
reconstructing a piecewise smooth function from its given cell averages to
high order accuracy and without introducing large spurious oscillations. To
solve this reconstruction problem we introduce a new interpolation technique

that when applied to piecewise smooth data gives high-order accuracy wherever

the function is smooth but avoids having a Gibbs-phenomenon at
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ON HIGH-ORDER ACCURATE INTERPOLATION FOR
NON-OSCILLATORY SHOCK CAPTURING SCHEMES

*
Ami Harten

1. Introduction.

In this paper we present an interpolation technique that gives rise to
nev high-order accurate non-oscillatory schemes for the numerical solution of

scalar conservation laws:

t>20

(1. 1a) u + t(u)x S 0 , == < x <o,

e u + a(u)ux

t

We assume the initial data uj(x) to be piecewise-smooth functions that
are either periodic or of compact support, and denote the evolution operator

of the unique entropy solution by E(t).

let wvy(x,t) denote a numerical approximation to a weak solution u(x,t)
of (1.1), such that v? = vh(xj,tn). Xy = jh, t, = nt, satisfies the
consexrvation form
(1.20) 4= B - x(ijﬂ/z - ;3-1/2) = B0y
Here !h(t) is the numerical solution operator, ) = t/h and Ej+1/2’ the

numerical flux, is a function of 2k variables

fy0172 = TV )

n n
‘102b) j-k+1'...’vj+k

which is consistent with (1.1a) in the sense that

£(u,u,eee,u) = £(u)

(1.2¢)

*
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o It is well known that if the total variation of the numerical solution

., l.“n

-

(1.2) is uniformly bounded in h for 0 < t < T

-
B

t (1.3) TV(vh(o,t)) < C-TV(uo) '
Q then any refinement sequence h + 0, T = O(h), has a subsequence hj + 0 so )
\. L
\
h that

L1
A (1.4) v, =5 u

3

where u 1is a weak solution of (1.1). Furthermore, if all limit solutions

v
o s
2e%a’a

ww
o

A A

(1.4) satisfy an extropy condition that implies uniqueness of the initial

value problem (1.1), then the numerical scheme is convergent (see ([4]).

- v

A

Our goal in designing numerical schemes is to obtain a computer code that

is both reliable and efficient. To achieve reliability we would like to use

schemes that are total-variation-stable in the sense of (1.3); to get

.i
I
¢
’

i

efficiency we need high-order accuracy. Unfortunately it became clear in the

development of shock-capturing schemes that it is not easy to satisfy both

requirements at the same time: Endowing a scheme with a property that implies

automatic control over the growth of the total variation of the numerical

ONECIRPNTARN - RO

S

solution may very well lead to a restriction on the order of accuracy of the
scheme.

The first successful attempt to achieve nonlinear stability was to
require positivity of the numerical solution operator, which led to the
development of monotone schemes. However the requirement of positivity auto=-

matically implies first order accuracy of the scheme (see [2]).

A AONCICRAN | AT AL AL

The next step in the development was to consider the larger class of

A total-variation-diminishing (TVD) schemes, where the numerical solution
X operator is required to diminish the total variation of any BV function v
(1.5) TV(Eh(T)-v) < TV(v) :
; these schemes trivially satisfy (1.3) with C =1 (see [3]). We were able to
: 2
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construct TVD schemes that in the sense of local truncation error are high-
order accurate everywhere except at local extrema where they necessarily
degenerate into first order accuracy, (see (9], (3], (1], (7], (8)). The
perpetual damping of local extrema determines the cumulative global error in
the Ip-norm to be of (1 +~%)-th order, i.e. only first-order in the maximum
norm but second-order in Lg-

Recently ((5]) we went one step further and introduced a larger class of

non-oscillatory schemes, in which the application of the numerical solution

operator to any mesh function v is required not to increase the number of
local extrema (note that this statement does not depend on h nor on the
smoothness of v). Unlike TVD schemes, which are a subset of this class, non-
osgcillatory schemes are not required to damp the values of each local extremum
at every single time-step, but are allowed to occasionally accentuate a local
extremum. Because of this last property we were able to construct non-
oscillatory schemes that are second-order accurate also in the maximum norm.
In the present paper we relax the control over the possible growth of the
total variation of the numerical solution even further and consequently are
able to design schemes that are accurate to any finite order r. These
schemes satisfy
(1.6) TV(E,_(t)+u) € TV(u) + o™, weuy
where U is the set of functions that are C, except at a finite number of
points (in any finite interval) where they may have a discontinuity in the
function or some derivative ( describes the generic form of the “computable"
solutions of (1.1)). We shall refer to this class of schemes as essentially

non-ogcillatory schemes. The inequality (1.6) ensure- that the scheme does

not have a Gibbs-like phenomenon of oscillations that are proportional to the

size of the jump at a discontinuity; the permissible increase in total
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variation is solely due to the smooth part of the function. Unlike the
second-order accurate non-oscillatory schemes of (5] which are a subset of
this class, essentially non-oscillatory schemes may occasionally increase the
number of local extrema. However these extra oscillations are on the level of
truncation error in the smooth part and therefore can be regarded as "non-
essential oscillations™.

In the following we shall present high-order Godunov-type schemes that
satisfy (1.6), and show that the design problem reduces to solving a problem

in interpolation; the latter is the main topic of this paper.
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2. High-order accurate Godunov-type schemes.

Let
= 1 ¢h/2 »
(2.1) u(x) = E'I-h/z u(xty)dy = (A *u)(x)
denote the sliding average of u(x). The sliding average ‘;(x,t) of a weak

solution of (1.1) satisfies
3= 1 h h
Integrating (2.2a) from t to t + T we get

(2.2b) Wk, t41) = Blx,t) = AE(x+ Z,t0u) = £(x- 3, tr0)]

where )\ = t/h and
(2.2¢) £(x,tia) -hl [3 flutx,ten)ran .

Thus the exact weak solution of (1.1) satisfies the following relation on the

computational mesh

~

— n+1 - &
(2.3) 2 ujn = ujn = A[f(xj+1/2.tn:u) » f(xj_1/2,tn:u)] ?

where ‘;sn =‘;(xj,tn) is the cell average of the solution at time t,.

Next we compare (2.3) to the numerical scheme in conservation form (1.2)

where we set V; H ng- We see that if the resulting numerical flux fj+1/2

satisfies

(2.4a) Eeiils = 13 £(u(xy, ) prt #0))aAN + O(RT)
then

(2.4b) vitT = 5™+ ot

provided that the coefficient in the O(hT) term in (2.4a) is sufficiently
smooth. Relation (2.4b) shows that in the sense of cell-averages the
truncation error of the scheme is O(hT*'), i.e.

(2.5) u(t+1) - E, (T)eu(t) = O(hTH)

We shall refer to a scheme that satisfies (2.4)-(2.5) as an r-th order

Godunov-type scheme. (Note the difference from Lﬁx—Wendroff-type schemes that
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are derived by approximating a Taylor expansion of the solution and where the
truncation error is made small in a pointwise sense.)

We observe that although (2.3) is a relation between the cell averages of
the solution at t, and t,;q, the evaluation of the numerical flux in

(2.4a) involves point values of the solution. Since

(2.6) u(x) = u(x) = 0(h?)
we have to devise a technique to recover point values from given cell averages '
to a desired accuracy, in order to obtain Godunov-type schemes that are more
than second-order accurate. The rest of this paper is devoted to describing
an algorithm for the solution of this problem in approximation: Given {;3},
cell averages of u € (I (i.e. piecewise smooth with a finite number of
discontinuities) find R(x{;) that reconstructs u(x) to any finite order r
(2.7a) R(x7u) = u(x) + O(h")
wherever u(x) 4is smooth, and such that
(2.7b) E(xjﬁ) -;j ’ '
(2.7¢) TV(R(*5u)) € TV(u) + O(h") ;
here .E denotes the sliding average of R.
It is easy to see that once we solve this approximation problem, the
Godunov-type scheme
(2.8) vt 2 g (1)ev = A CE(T)R(eV)
where A, is the cell-averaging operator (2.1) and E(t1) is the evolution
operator of (1.1), is r-th order accurate and essentially non-oscillatory in
the sense of (1.6).
To see that the scheme (2.8) is essentially non-oscillatory we observe
that both A, and E(t) are positive operators and therefore also TVD.

Consequently

(2.9) TV(E, (T)*u) = TV(A, *E(T)*R(+su)) € TV(R(*su))

. ."-'.-“"'\ OGS OO '\’*'\"\"\ \'\
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and (1.6) follows immediately from (2.7c).
Next we show that (2.8) is r-th order accurate in the sense of (2.4).
Let us denote
(2.10a) v (s t) = E(£)eR(*v")
Using (2.7b) and the fact that v (x,t) is an exact solution of the

conservation law (1.1a) we can rewrite (2.8) in the form (2.3), i.e.

nHl 0 (e

(2.10b) vy 3 se102 " fj_1/2)
where

= 1 (T
(2.10c) fie1/2° 7 15 f(vn(xj+1/2.t))dt .

(2.4a) then follows from (2.7a) and the stability of entropy solutions of

(1.1).

Remarks: (1) The scheme (2.8) is the abstract form of Godunov-type schemes.
In practice we use an approximation to (2.10) which is obtained by using an
appropriate numerical quadrature for the integral in (2.10c), and using an
approximate solution operator to evaluate vn(xj+1/2,t) in (2.10a). For more

details see [5) and [6].

(2) We initialize the computation by taking cell-averages of the given initial

data, i.e.
O =0 1 fh/2
(2.11a) vj uj hf_h/z uo(xjﬂr)dy .
When we apply the scheme(2.8) N times, Ne1t = t, and the initial data
are such that the solution is smooth, we expect the truncation error (2.5) to
accumulate linearly. Thus at the end of the time loop we get (since 1t =

O(h))

(2.11b) v‘; = E(xj,t) + o(nY) .

Since in general we are interested in pointwise values we output R(xj;vN)

which gives us the pointwise data to the desired accuracy:

AF R ,.'-".:~:.:::.‘-:_".:".'._-.'._u:.-,: A
','.. ex- _~{‘:‘J.\...;..‘~..;-...-_,. "
L P ATV DD DA AP T

R R R L O A L L
i = ..\_.‘ R AL RN ST .:_ .-_W.-‘i

........



(2.11¢c) R(x;vN) = R(x;u) + O(hF) = u(x,t) + Oo(hT) .
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3. Intetpolation.

In this section we present a new interpolation technigue H (xj;u) for
functions u € U
(3. 1a) Hm(xj:u) = u(xj) .
The interpolant Hp(x;u) is a piecewise polynomial function of x, i.e.
(3.1b) Hp(xju) = qm'j+1/2(x:u) for x4 € x € X449

where is a polynomial in x of degree m. Wherever u(x) is

I, 3+1/2
smooth we get that

k k
(3.2) E—E-H frral= 9-; R ogh RIS e e <

ax- ° ax
(We use here the standard convention that k = 0 corresponds to the function
itself.)

The new feature of this interpolation technique is that, although u may
be discontinuous, the interpolant Hyp(xiu) is essentially non-oscillatory in
the sense that
(3.3) TV(H_(+7u)) < TV(u) + om™")

This interpolation technique will be used in the following sections to develop
an algorithm for the solution of the reconstruction problem (2.7).

To accomplish (3.2) we take qm’j+1/2(x;u) to be the m-th degree

polynomial that interpolates u(x) at the m + 1 successive points {xi},

in(3) € 4 € 4ip(3) + m, that include x4 and x44q, i.e.

(3.4a) qm,j+1/2(x17“) = u(xi) 0 im(j) i« im(j) +m ,

(3.4b) 1-m¢« im(j) -3j5<0 .
Clearly there are exactly m such polynomials corresponding to the m
different choices of ip(j) subject to (3.4b).

We have agsumed that u(x) has a finite number of discontinuities.

Hence for h sufficiently small there are at least m + 1 points of smooth-

9
L0 L0 S SRR " W -t' - P——
-.-'..:-.,..- - - .\." :".:- i . "y - :\\‘ ': <, 4' 0 {..- -_‘(-.\ .:'..l:":.-(,\'-‘ "‘..
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ness between any two successive discontinuities. Consequently if (xj,xj+1)
is an interval in which u(x) is smooth, there is at least one choice of

in(3) such that u(x) is smooth in i) < x< Mip(3)4me

Next we show that any algorithm to assign ip(j) (3.4) to (xj,xj+1) /
that has the property:

(3.5) smoothness in (xj,xj+1) ==> smoothness in (xim(j)'xim(j)+m) 0

yields Hp(xju) that satisfies both (3.2) and (3.3).

Let xp be a point that has a neighborhood in which u is smooth.
Hence for h sufficiently small there is an interval (xj,xj+1) that
includes x; in which u is smooth. It follows then from (3.5), (3.4) and
the fact that qm,j+1/2 is an interpolating polynomial that uses data from an

interval in which u is smooth that

k k
d d m+1-k
ik Dy, §+1/2 (X1W) ';;;‘u(x) + o(h ) for 0<k<m
(3.6) .
and xj < x < xj+1 ;

this implies (3.2).
We turn now to show (3.3). First let us consider an interval (xj,xj+1)

in which u is smooth. It follows immediately from (3.6) with k = 0 that

T+l
3.7 ( ; (u) + O(h 5
( ) {x ,xj+1 qm,3+1/2) = TV j'xj+1] J . )
Moreover in the intervals in which u is smooth and g& is bounded away from

zero, it follows from (3.6) with k = 1 thaé for h sufficiently small

d
3§'qm,j+1/2 + 0 in such an interval and consequently

(3.8)

(q ) (u) .
] m,j+1/2 [xj'xj+1]

v
[xj'xj+1

-..1.q.-\ \ \n.\\.-.\ \
. o

-‘~‘.\
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Next let us consider an interval (xj,xj+1) that contains a single
discontinuity of u. It turns out that for h sufficiently small qm,j+1/2'
for any choice of ipj(j) in (3.4), is monotone in (xj,xj+1): this implies
(3.8). To simplify the argqument let us consider the case that u is a step-
function with the discontinuity located in (xj,xj+1). In this case u(xi) =
u(xj4q) for all i * j and therefore
st Im, 54172 %478 = G, a2 (%54 70)
for all indices i such that
(3.9b) it3j and 0 < i-1 (3) < m-1 .

From (3.9a) it follows that -g;-qm'j+1/2 has a root in each of the m - 1
intervals (xi,xi+1) with indices i satisfying (3.9b). Since %; qm,j+1/2
is a polynomial of degree m = 1 it cannot have an additional root in
(xj,xj+1) and therefore qm,j+1/2 is strictly monotone there.

We conclude from the above analysis that an increase in total variation
is possible only in those intervals in which u has a smooth local extremum.
Since there is only a finite number of such intervals and since the increase

there (3.7) is on the level of interpolation error, (3.3) follows (see [6] for

a more detailed analysis).

Bomea
.

In the following we present an algorithm to assign i (j) to (xj,xj+1).

1
a0 s
%

e

In order to satisfy (3.5) this algorithm makes use of the information about

e 7o

smoothness contained in a table of divided differences of u. The latter can

i -‘;

be defined recursively by

S ——
) [

' (3.10a) ulxy] = ulx;)

5

r: (3010b) uIXi' ...,xi+k] = (u[xi+1,...,xi+k] — u[xi,...,xi+k_1])/(xi+k-xi) °
N ¢

s

N It is well known that if u is C, in [xj,xj4] then

‘

i 4 (3011&) u[x eee X ] = 1—'22— u(E ) X < E <€ x

< i’ {4k k! dxk i,k ’ i i,k itk °

\O

2 0 2 m
e

%7,
[
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However if u has a jump discontinuity in the p-th derivative in this

interval, 0 < p < k, then

Ve o P o))

(30111)) u[x geee 1 X
i axP

i+k
aP
here [;;5 u] denotes the jump in the p~th derivative.

Our algorithm is recursive: It arrives -t H.(x;u), which amounts to
assigning i,(j), by successively evaluating i,(j), k = 1,...,r. We start
by setting
(3.12a) 1903) =3 ,

i.e. q1'j+1/2 is the first degree polynomial interpolating u at x4 and
X441° Let us assume that we have already defined i,(j), i.e. qk,j+1/2 is

the k-th degree polynomial interpolating u at

(3.13) ' xik(j),...,xik(j“_k .

We consider now as candidates for qk+1,j+1/2 the two (k+1)=-th degree .
interpolating polynomials obtained by adding to (3.13) the neighboring point

to the left or the one to the right; this corresponds to setting ik+1(j) =

ig(3) = 1 or ip4q(3) = i (j), respectively. We choose the one that gives a

(k+1)=th order divided difference that is smaller in absolute value:

(
i, 090 =1 if |u[xik(j)_1,...,xik(j)+k]|

| < |u[x STt ]|
(3.12b) L, (3) = 1) (et |

tik(j) otherwise

Using Newton's form of interpolation it is easy to see that

1 (3)+k
(3.14) qk+1 j+1/2 -qk +1 -u[x peee ) X ++1] . I | (x-xi) . v
' 3+1/2 henr(D hepq (I i=i (3)
k
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Since the product in the RHS of (3.14) is the same for both choices in
(3.12b), we see that our algorithm selects as Y 3+1/2 this (k+1)=th
’

polynomial that deviates the least from 9 §+1/2 in (xj,xj+1). Clearly
’

if h is sufficiently small it follows from (3.11) that the algorithm (3.12)
satisfies the requirement (3.5), and consequently has the desired properties
(3.2) and (3.3). However if h 1is not small, (3.14) shows that the algorithm
attempts to find the "least oscillatory" polynomial (subject to the restricted
choice in (3.12b)), and thus is meaningful also in this case.

In the next two sections we describe two different techniques to solve
the reconstruction problem (2.7) in terms of interpolation. The importance of
using the particular interpolation described in this section is that its non-
oscillatory nature goes over to the reconstruction algorithm. The non-
oscillatory nature of R(xﬂ;) (2.7c) is demonstrated in section 7 by

numerical examples (analysis is presented in [6]).
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4. Reconstruction via the primitive function.

“e®e’e’s%0s' s

In this section we apply a technique frequently used in area-preserving i

1

approximations’' in order to solve the reconstruction problem in terms of

interpolation.

Ll S A R R B

Given cell-averages ;5 of a piecewise-smooth function u e U

= 1 Xy+172
uy = q ij-vz

(4.1) u(y)dy ’ h

j ° %y+172 T ¥y-172

we can immediately evaluate the point-values of the primitive function U(x)

o o e s

- (4.2) ulx) = [* u(y)ay

.t X,

‘E by ;
o b = i
(4.3) 121 hy uy (j+1/2] .

- : 0

. Since

':.

(4.4) u(x) = <= Ux)

we can apply interpolation to the point values of the primitive function (4.3)
f' and then obtain an approximation to u(x) by defining ]
L, o I
(4.5) R(x;u) ax H (x;0) .

We note that this procedure does not require uniformity of the mesh.

y The rrimitive function U(x) is smoother than u(x) (by one extra
;3 derivative) and therefore U € U. Hence we get from (3.2) that wherever u(x)
‘; is smooth
(4.6) &, (x1U) = & ux) + o™ %), o<k<r .
- dxk r a k
x
B Using (4.4) and (4.5) we can rewrite (4.6) as
1 2 L
2 (4.7) £ ROuW) = 2 utx) + o(n” By
» dx dx
‘
A
ol
. 1 '
kS I thank Nira Dyn from Tel-Aviv University for pointing this out. A similar

approach was taken by Woodward [10] and Zalesak [11].
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which implies (2.7a) for & = 0.

We turn now to study E(x;;), the sliding average of (4.5):

(4.8)  Reuw) = ¢ [P2, Rooylay =g x + 5 0) - B (x -5 0] .

Denoting the interpolation error by
(4.9) e(x) = Hy.(%;U) - U(x)

we can rewrite (4.8) as

h 1 h h
3)] i {e(x+ 3) - e(x~- 3)]

T T U N LT T A, TP e TR T
.

= 1 h
R(xjsu) = & {U(x+ 3) - U(x=-

(4.10) - T} f:::;i u(y)dy +% [e(x+ %) - e(x- %)]

= x] +§- fe(x+ 2) - e(x= D] .

Since
(4. 11b) e(x) = o(hT*y

we get from (4.10) that (4.5) satisfies (2.7b), i.e.

(4.12a) R(x ru) = uj

and that wherever e(x) 1s smooth

(4.12b) Rixs) = u(x) + o™y .

It follows from (4.12) that E(x;:) is a piecewise-polynomial interpolation’
of degree r of ;. Note that (4.12b) is one order more accurate than (4.7)

with £ = 0, which is R(xsu) = u(x) + o(h").
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S. Reconstruction via deconvolution.

In this section we describe another technique to reconstruct a piecewise

smooth function u € U from its given cell-averages ;5. We assume that the

mesh is uniform and consider the cell-averages uj to be point values of

;(x),
(5.1a) uix) = fhgiz u(x-y)dy
(5. 1b) uy = u(xj) .

The function ;kx) (5. 1a) was referred to earlier as the sliding average
of u. Here we consider it to be the convolution of wu(x) with the

characteristic function of a cell wh(x)

1/h  for |x| < hs2
(5.2a) Y(x) = ’
0 for |x| > ns2
i.e.
(5.2b) u(x) = ft, u(x=y) ¥y (y)dy = (u*y )(x) . c

In the following we describe a procedure to reconstruct u(x) up to 9
O(hY) for any finite r; this will be referred to as "finite-order

deconvolution™. Expanding u(x-y) in (5.2b) around y = 0, we get
( )

[} (-]
- (x) (- 1) h/2 . k (k)
(5.3a) u(x) = J = P72 ey = ¥ anfu® e
Wo T H R ’-h/2 gop K
vhere
0 k odd
(5.3b) a = .
=k
e R k even
(k+1)!
g
Multiplying both sides of (5.3a) by h 3 and then truncating the expansion
dax
in the RHS at O(hY) we get
r=2=1 3
- . + +
(5.4a) hz u(z)(x) = 2 akhk 'Q'u(k z)(x) + o(h") .
k=0
16
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Writing the relations
I ‘\;(x)
hu’ (x)
(5.4b) | hZa" (x)

h!"1 E( r~1)

.

(x)
J

(504&) for 4= 0,00.,!"1

in matrix form, we obtain

LR N

Let us denote the coefficient matrix in the RHS of (5.4b)

is upper triangular and diagonally dominant.

by C~!' from the left we get
u(x) S0x)
. hu'’(x) -1 hu' (x)
(5.4c) . - :

r=1 =(r-1)
u

(x)

~

u(x)

hu' (x)

h2u" (x)

h

by C.

+ o(h%)

“

Relation (5.4c) is the essence of finite-order deconvolution.

Given 3

and compute O(hY)

approximations to h” u

2 —=(R)

(x)

at Xj

by taking

r-1u(r-1) (x)

1

..

MCRGCIME TR T S A O i o 5 40 00 f oa G 0 ar 4o i n o oa ) o
e T T,

+ o(hr) 5

This matrix

Multiplying both sides of (5.4b)

(5.1) we apply the interpolation technique of section 3 to u

appropriate derivatives of H (x;‘t;), m » r-1; denote these approximations by
m

Dl,j’ 0< £ < r-1:

(5.5a) 30’1 = Kj
(5.5b) lej - n 'G"')(xj) +0(h%) , L= tee0,r=1 .
Using Sz' j in the RHS of (5.4c) we obtain O(h¥) approximations to
h"u”')(xj) which we denote by Dy 3¢ i.e.
[

R e O
- oo o
po '-('3(5" ERECRE '..'.

-
Raldanl
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(5.6a)

Dg,4 = ulxy) + O(h¥)

ha®(x.) + om®) ,

= 1 < < r-1 .
Dl,j 3 L r-1

(5.6b)

Since C is an upper triangular matrix, Dz 3 are computed by back-
[ 4
substitution: We set
(5.7a) Dr-1,j = Dr-1,j

and then compute backwards for k = r=2,...,0

r-1
5.7 = - .
(5.7b) 3% %3 7, L, %P
Finally we define
aa r=1, k
(5.8) R(x3u) -xZoT‘TDk'j[(X-xjvm for |x-xj| < h/2 .

It follows immediately from (5.6) that

-1
R(xsu) = z kl (k)(xj)(x-xj)k + O(hT) = u(x) + O(h¥) ,
k=0

which implies (2.7a).

(5.9)

To see that the reconstruction (5.8) satisfies property (2.7b)
(5.10a) E(xjsi) = Ej

we evaluate

T~ —_ 1 /h/2
R(xj:u) = E-f g/z R(xj y:u)dy
to get
r-1 D r=-1
— 1 k.3 k
(5.10b) R(x su) = § — —t3 L ydy = + J anp
3 oo X1 X h/2 Po, 3 S %

where a, are (5.3b). Relation (5.10a) then follows immediately from

comparing the RHS of (5.10b) to (5.7b) with k =0

r-1

* k§, %Dy, 4

We note that this result is independent of the

D

0,3

and then using (5.5a).

particular values assigned to Dz 3 for 1< £ € r=-1.
’
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Remarks: (1) ;kx) is smoother than wu(x), and therefore u €U ==> uweu.

Consequently
L L
ax> ™ dax

Since H, 1is only continuous at Xy0 for k > 1

dk - dk =
(5.11b) —— H (x,+0ju) # —— H (x_,=-0;u) .,
dxk Ll dxk 3

In the numerical experiments presented in this paper we have taken

(5.12a) DO,j = “j
k k
- k 4 -_ a =
(5. 12b) . = h M(—— H (x,+03u), —— H (x,-03u))
Py, ok ™3 ok m 3

where M(x,y) is the min mod function
8. min(|x|,|y|) if sgn(x) = sgn(y) = s
(5.13) M(x,y) =
0 otherwise .
Clearly this choice satisfies (5.5) for m » r-1.

(2) The finite order deconvolution extends very easily to the case where the

mollifier vh(y) is replaced by a smoother function or a function with a

different support.

on '.t_‘:-:'.:-:-:. -.. 30 \ xR A \ CICE 3
LY T '-\\‘\- Seianl ROPCRE N .' 4
L'. YRR \{'h LA N -.\\‘\. P ePe, \‘::g'\- Ea ":‘-'\f. ., '-'\-\




T T R R N N T S T T R S r T Iy I I R I I e T IV Iisneirs™

[ 3

6. The constant coefficient case.

In this section we consider the Godunov-type scheme (2.8) in the constant
coefficient case
(6.1a) u, + au, =0, a = const.
(6.1Db) u(x,0) = ug(x) .
The exact solution in this case is just pure translation with a constant
speed a
(6.2) u(x,t) = [E(t)-u l(x) = ug(x-at) .
Consequently we can express the numerical scheme explicitly in the following

form:
(6.3) vt = Rixg-atsv®) s
here 'E is the sliding average of R.

The truncation error in the sense of cell-averages (2.5) is then
(6.4) u(x-at) = R(x-at;u) .,
which measures how well '5(0;55 approximates ;; We have noted that
generally if R(O;G) approximates u to O(hr), then 510;33 approximates
;' to 0(hr+1), which corresponds to an r=th order accurate scheme. To have
this gain of one extra order of accuracy we need spacial smoothness of the
reconstruction error; this is evident from (2.4a) and more directly from
(4.10) - (4.11). Wwhen we do not have this smoothness we find that the scheme
is r-th order accurate in the Lqy-norm but not in the maximum norm (see section
7).

We note that although the problem to be solved (6.1) is linear, the
numerical scheme (6.3) is highly nonlinear. The nonlinearity enters through

the interpolation, where the stencil (3.12) is chosen differently at each

point and each time level, depending on local smoothness of the numerical

solution. In this respect (6.3) is conceptually different from standard




AR AT TR s e L e RN N TSI I e v g -~ -
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EECE R e e |

finite-difference schemes where the stencil is arbitrarily predetermined.

We would also like to point out that this scheme breaks aways from the
somewhat artificial notion of "upstream differencing"”: The decision what
stencil to use in the reconstruction is made on the basis of smoothness
considerations and has nothing to do with the "direction of the wind". The
latter enters only when applying E(t) 4in (2.8). The resulting stencil is a

combination of the two.
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7. Numerical examples.

In this section we present some numerical examples in order to illustrate
the nature of the approximations described in this paper.

The first set of examples deals with smooth data. 1In Figs. 1a to 1f we
show approximations to u(x) = sin mx, = 1 € x € 1; these were reconstructed

via deconvolution (see section 5) from the cell-averages input

= = _ sin(wh/2)
(7.1a) uj = u(xj) ~n72) sin(ﬂxj)
y 2
(7.1b) xy==1+3+% , 0<j<N-1 .

In this example we took N = 6 and extended the data outside [-1,1] by
periodicity. The cell-averages input is shown in Figs. 1a = 1f by circles.
Both the reconstructed approximation R(x;:) (5.8) and u(x) = gin ®x are
shown by solid lines.

Let us denote the polynomial degree of H(x;G} (5.12) by P; and that
of R(xju) (5.8) by Pp:

(7.2) P; = deg[H(xsu)] = deg[R(x;u)] .

PR

Fig. la shows the reconstruction associated with the original first-order
accurate Godunov scheme: Pp = Pp = 0.

Fig. 1b shows the reconstruction associated with the "“second-order" TVD
schemes [3]: Pp; = Pg = 1. Comparing it to Fig. %a we see that the local
extrema are flattened in exactly the same way - this demonstrates the
degeneracy to first-order accuracy there.

Fig. 1c shows the reconstruction associated with the second-order
accurate non-oscillatory scheme of [5]: P; = 2, Pp = 1. Comparing it to Fig.
1b we observe a considerable improvement in the quality of the

approximation. We also note that the reconstruction increases the total

variation of the input data; however, this increase is small - it is of the :

size of the truncation error.
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Figs. 14, le and If show the reconstruction corresponding to Py =k,
Pp = k=1 for k = 3,4 and 5, respectively. We observe that unlike the
previous approximations, the reconstruction here does not go through the
circles; this is a consequence of (2.6).

The reconstruction R(x;G} is discontinuous at x. the size of

j+1/2°
the jump is proportional to the reconstruction error. As we increase the
accuracy of the reconstruction going from Fig. 1a to Fig. 1f, wé observe that
the size of the jumps becomes smaller and smaller; in Fig. 1f the jumps are
hardly noticeable.

In Table 1 we list the L_-norm of the interpolation error
|H(x{;) -.;(x)l and of the reconstruction error |R(x);3 - u(x)l for a
refinement sequence
(7.3) N=4, 8 16, 32, 64 in (7.1) .

We turn now to examine the performance of the resulting Godunov-type
scheme (2.8) in the constant coefficient case
(7.4) u +u, =0 u(x0)=sinwx , -1<x<1 .

We input the initial data in the form of the cell-averages (7.1). Again we
assume periodicity in space, which implies a period of 2 in time as well.

In Table 2 we list both the L_- and the Lj-error at t = 2 of the
scheme (2.10), (6.3) where R(xi;) is reconstruction via deconvolution with
Py and Py defined by (7.2). The calculations in this table were performed
for the refinement sequence (7.3) with X = t/h = 0.8. In addition to the
actual error we also list the quantity r which is the computational order of
accuracy. Assuming the error to be exactly e, = const*h™ we evaluate r

for any two successive calculations in the refinement sequence by

(7.5) r = 1092(eh/eh/2) .
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In Table 3 we repeat the calculations in Table 2 for the scheme (2.10),
(6.3) where now R(x;E) is reconstruction via the primitive function (4.5).
Here Py denotes the polynomial degree of the interpolation H(x;U) of the
primitive function (4.2), i.e.

(7.6) Py = degl[H(x;U)] .

We observe from Table 2 that the schemes with P; = k and Pg = k=1 are

(at least) k-th order accurate in both L, and L4. The TVD scheme with

PI = PR =1 is a little bit better than first-order in L, and a little bit
worse than second-order in Lqy.
We observe from Table 3 that the schemes with the odd order Py = 3

and Py = 5 seem to be third and fifth-order accurate, respectively, in both

the L, and L4 norms.
However when PU is an even number, Py = 2, 4, 6, this order is
realized only in the L4-sense. In the L -norm it seems to be one order lower
in accuracy.
Comparing Table 2 and Table 3 for the.fine mesh N = 64, we find that
the scheme from Table 2 with Py = k and the scheme with Py = k+1 from
Table 3 seem to give comparable accuracy.

We turn now to examine the performance of the various approximations when

applied to the discontinuous function

( -X sin(31lx2/2) for -1 < x < -%

S

|sin(2nx)| for |x| < 3 ’

.

(7.7) u(x) =

sz -1 -%sin(Bﬂx) for %< x <1

which we extend periodically outside ([-1,1].
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The circles in both Figs. 2a and 2b show the given cell-average of (7.7)
at N = 40 uniformly spaced mesh points. The two solid lines in Figure 2a
are u(x) and H(xju) with ®; = 6. The two solid lines in Fig. 2b are
u(x) and R(x{;) with Pgp = 5. We see in both figures that the
approximations give good accuracy in the smooth part and are essentially non-

oscillatory. This is as to be expected since N = 40 provides sufficient

- -

resdolution of the problem in the sense that there are at least 7 points of

smoothness inbetween discontinuities.

[RAY) _ CUt ot FArS s CHEET,T AT TG C U OGS o
. )

In Figs. 3a and 3b we repeat the calculation in Fig. 2 for N = 15. It

v

is interesting to note that in spite of the lack of resolution in this case
both approximations are eésentially non-oscillatory.

To compare the two reconstruction techniques we repeat in Fig. 3c the
same case described in Fig. 3b, but now using reconstruction via primitive
function with Py = 6. The main difference is in the rounding of local
extrema at discontinuities present in Fig. 3b; this is due to the min mod

operation in (5.12b}).

Next we apply the Godunov=-type scheme (2.10), (6.3) to the solution of

e -0 " ——
CACRERR LSRG AR - AR ARARERARS - Ja s e

+u, =0 with the initial data (7.7). As before we initialize the
Uy X

computation by taking cell-averages of the initial data and use X = t/h = 0.8.

In Figs. 4, 5 and 6 we present calculations performed with reconstruction via

< T e

deconvolution using Py = Pp = 1 in Fig. 45 Py = 2, Pp = 1 in Fig. 5 and

Py = 4, Pp = 3 in Fig. 6. The results are presented at: (a) t = 2,

(b) t = 4. The circles in these figures show the reconstructed numerical

approximation at the mesh points; the solid line shows the exact solution.
We observe that in all cases we get non-oscillatory approximations, and

that the schemes are dissipative in time. The quality of the results improves

with increasing formal order of accuracy.
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In Fig. 7 we compare the two reconstruction techniques. In Fig. 7b we

repeat the same calculation as in Figs. 4 to 6 using Py =5 and Pg = 4. In

Fig. 7a we use reconstruction via primitive function with Py =6 in (7.6).

Unlike the situation in Figs. 3b = 3¢, here the two schemes produce very

similar results.
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Table 1. Interpolation and reconstruction L_-errors
for u(x) = sin ux.
N PI.1 ’ PR’1 PI=2 ’ PR-1 PI-3 ’ PR=2 PI-4’ PR.3 PI-S' PR’=4 PI'G, PR-S
~
— 3| 4| 1.86x1071 | 1.86x10”1 | 7.39x1072 | 7.39x10"2 | 3.17x1072 | 3.17x10"2
= 0
C
T 8| 8| 6.85x1072 | 2.84x1072 | 7.63x10"3 | 3.16x10"3 | 9.37x10"4 | 3.88x10"4
"e H
g 5
“ g | e 1.87x1072 | 3.72x1073 | 5.36x107% | 1.07x10™% | 1.70x10™5 | 3.39x10~6
[o]
=
{“::'E’ 32 | 4.78x1073 | 4.71x1074 | 3.45x107° | 3.40x10°6 | 2.76x10"7 | 2.72x10"8
(2]
S |ea | 1.20x1073 | 5.91x10™5 | 2.17x1076 | 1.07x1076 | 4.36x10™2 | 2.14x10~10
g 4 | 2.57x10"1 | 2.57x10"1 | 1.07x10"1 | 1.07x10"' | 4.69%x10"2 | 4.69x10~2
= 5
i.'ig, 8 | 1.64x10™1 | 6.28x10"2 | 1.52x10"2 | 5.34x10"3 | 1.74x10~3 | 5.85x10~4
< H
' " 3 n ¥ . o
5'{-} 16 | 4.87x1072 | 1.37x10"2 | 1.13x10™3 | 2.15x10"4 | 3.28x10"5 | 6.22x10~6
] o.
e 2 132 | 1.27x1072 | 3.27x1073 | 7.54x1075 | 7.18x1076 | 5.37x10~7 | 5.23x10"8
s B
§ 64 | 3.20x1073 | 8.07x10”4 | 7.88x1076 | 2.52x10"7 | 8.49x10~2 | 4.16x10~1°
!
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Fig. la. Reconstruction of sin wx. PI = PR = 0.
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Fig. 2a. H(x;u) with P, =6 vs. u(x). N = 40.
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Fig. 2b. R(x;u) with P, =6, P, =5 vs. ulx). N=40.

33
- areqen T p—— e
o WY -'Q i 2 ;.‘,: R N LD S T TN NN s ‘-}-\.‘g\. WY .: PR _.r-' R SN _,\ ¥
[ e ; - - L . -.-
o Lo R S A A % : X

\'a . \.}\.



T G TR G T 0 T AT ARG TR G SR T AT AT T, TR TR

1.9 :
.70 - -
0.250 -
-0.280
©.780 -
-1.28 T : Y Y ) .
-1.00 -0.800 ~0.200 0.200 0.900 1.00

Fig. 3a. H(x;ﬁ) with PI =6 vs. ﬁ{x). N = 15.
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R(x;u) with P, =6 vs. u(x). N = 15.
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Fig. 4b. Same as Fig. 4a at ¢t = 4.
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